15,966 research outputs found

    Two-orbital Systems with Crystal Field Splitting and Interorbital Hopping

    Full text link
    The nondegenerate two-orbital Hubbard model is studied within the dynamic mean-field theory to reveal the influence of two important factors, i.e. crystal field splitting and interorbital hopping, on orbital selective Mott transition (OSMT) and realistic compound Ca2βˆ’x_{2-x}Srx_{x}RuO4_{4}. A distinctive feature of the optical conductivity of the two nondegenerate bands is found in OSMT phase, where the metallic character of the wide band is indicated by a nonzero Drude peak, while the insulating narrow band has its Drude peak drop to zero in the mean time. We also find that the OSMT regime expands profoundly with the increase of interorbital hopping integrals. On the contrary, it is shown that large and negative level splitting of the two orbitals diminishes the OSMT regime completely. Applying the present findings to compound Ca2βˆ’x_{2-x}Srx_{x}RuO4_{4}, we demonstrate that in the doping region from x=0.2x=0.2 to 2.0, the negative level splitting is unfavorable to the OSMT phase.Comment: 7 pages with 5 figure

    Secrecy Outage and Diversity Analysis of Cognitive Radio Systems

    Full text link
    In this paper, we investigate the physical-layer security of a multi-user multi-eavesdropper cognitive radio system, which is composed of multiple cognitive users (CUs) transmitting to a common cognitive base station (CBS), while multiple eavesdroppers may collaborate with each other or perform independently in intercepting the CUs-CBS transmissions, which are called the coordinated and uncoordinated eavesdroppers, respectively. Considering multiple CUs available, we propose the round-robin scheduling as well as the optimal and suboptimal user scheduling schemes for improving the security of CUs-CBS transmissions against eavesdropping attacks. Specifically, the optimal user scheduling is designed by assuming that the channel state information (CSI) of all links from CUs to CBS, to primary user (PU) and to eavesdroppers are available. By contrast, the suboptimal user scheduling only requires the CSI of CUs-CBS links without the PU's and eavesdroppers' CSI. We derive closed-form expressions of the secrecy outage probability of these three scheduling schemes in the presence of the coordinated and uncoordinated eavesdroppers. We also carry out the secrecy diversity analysis and show that the round-robin scheduling achieves the diversity order of only one, whereas the optimal and suboptimal scheduling schemes obtain the full secrecy diversity, no matter whether the eavesdroppers collaborate or not. In addition, numerical secrecy outage results demonstrate that for both the coordinated and uncoordinated eavesdroppers, the optimal user scheduling achieves the best security performance and the round-robin scheduling performs the worst. Finally, upon increasing the number of CUs, the secrecy outage probabilities of the optimal and suboptimal user scheduling schemes both improve significantly.Comment: 16 pages, 5 figures, accepted to appear, IEEE Journal on Selected Areas in Communications, 201
    • …
    corecore